GREELY SAND AND GRAVEL Ottawa Playground Sand Surface Impact Testing

Peter Kells

Grace-Kells Consultant Inc. 5 Garrison Street, Ottawa K1Y 2T7 ph: 613-728-0847 fax: 613-728-1598 e-mail: grace-kells@ncf.ca June 2009

1. Abstract

This report summarizes the results of a controlled laboratory impact surface test that was conducted on sand by Grace-Kells Consultant Inc. for Greely Sand and Gravel. All testing was performed to procedures specified by the Ottawa-Carleton District School Board and outlined in a report titled New Playstructure Sand Testing (March 2001). The test used a Triax 2000 Impact Surface Testing device to measure the impact attenuating properties of the sand sample. The purpose of the impact test was to establish the highest drop height attainable that yielded both a HIC of less than 1000 and a peak G-max of less than 200 in both a dry and a wetted state. Results are recorded in tabular form. In addition tests were performed according to OCDSB procedures to ascertain water saturation and flow rates for the sample.

2. Distribution List Brent Pyper, Greely Sand and Gravel

3. Contents

Summary		p. 1
Introduction		p. 2
Method		p. 2
Results		р. 5
Appendix A - Apparatus		p A1
Appendix B - The Samples .		р В1
Appendix C - Surface Impact	Data	р С1
Appendix D - Certificates		p D1

4. Summary

4.1. Surface Impact Tests

Surface Impact Tests were performed on two separate sand samples (ie. washed sand and unwashed sand) under two conditions - wet and dry. The sand was first placed in a testing crib in a dry condition and tested. Once dry testing was complete, the sand in the crib was wetted with 30.8 litres of water and another series of impact tests were performed on wet sand.

The highest drop heights with a HIC less than 1000 and G-max less than 200 were as follows:

Ottawa Playground Sand Dry	390 cm
Ottawa Playground Sand Wet	270 cm

4.2. Saturation Tests

A volume of 14.1 litres of dry sand was placed in the testing apparatus. A measured quantity of water was added until the sand became saturated and water started dripping out the bottom of the apparatus.

The volume of water to saturate the sand sample was 3.9 litres.

4.3. Drainage Tests

A volume of 14.1 litres of dry sand was placed in the testing apparatus. A continuous stream of water was poured over the sand and the time measured from start until water started dripping out the bottom of the apparatus. The flow time for the sample was 1 minute 50 seconds.

5. Introduction

Greely Sand and Gravel contracted Grace-Kells Consultant Inc. to perform surface impact tests on a sand sample according to the procedures established by the Ottawa-Carleton District School board in a CALL FOR QUOTOTATION 2000-10-26 and subsequently described in a report titled *Ottawa-Carleton District School Board New Playstructure Sand Testing* (March 2001).

1. Method

1.1. Location

The tests were performed in a heated garage space at 5362 Bank Street, Ottawa. The tests were conducted over a concrete floor.

1.2. Sample

Approximately 1 cubic metre Greely Ottawa Playground Sand was supplied by Greely Sand and Gravel.

The sample was collected and stored on the concrete floor of the testing garage for 1 week prior to testing (see sieve analysis Appendix B)

1.3. Apparatus (see Appendix A for details)

1.3.1. Equipment used for laboratory impact surface testing

- 19 mm thick plywood crib 76 cm x 76 cm x 60 cm deep c/w drain holes and lined with geotextile filter cloth
- Triax 2000 Impact Surface Testing device
- digital probe thermometer
- Steel hand tamping device

- gas powered 81 Kg. Vibra plate
- digital stopwatch

1.3.2. Equipment used for the saturation and drainage tests

- Plastic garden watering cans (2)
- 14.1 L burlap bag suspended from a steel pail with bottom removed
- digital stopwatch

1.3.3. Test Procedure

1.3.3.1. Dry Impact Surface Tests

Sand was placed in the plywood crib then loosened and levelled to a depth of approximately 46 cm. A plywood sheet was then placed over the sand and the gas powered vibra plate was placed on top and run for 1.5 minutes to compact the dry sand. The vibra plate and plywood sheet were then removed and the sand surface scraped if necessary to bring the finished compacted sand depth to 41 cm. The Triax 2000 was installed over the centre of this test crib and an initial series of 3 drops was performed from a given height with the results recorded. The average of the last 2 drops was calculated and recorded as the HIC/G-max value for that height.

The entire loosening and compaction procedure was then repeated and another series of 3 drops held at a height 30 cm up or down as required with the results again recorded and averaged. The procedure was repeated until a maximum passing height (where both the HIC was at or below 1000 and the peak G-max was at or below 200) as well as a minimum failing height (where either the HIC was over 1000 or the G-max was over 200) were both recorded.

1.3.3.2. Wet Impact Surface Tests

Based upon values determined in the original OCDSB tests of 2001 the sample in the crib was wetted with 30.8 L of water. The OCDSB had decided that this would simulate the field conditions of a well drained playground site after a rain storm. The water was added to the the sand sample in the crib from the plastic watering cans. The sand was then loosened with a garden spade, levelled and hand tamped with a steel hand tamping device. The sand surface was scraped if necessary to bring the compacted sand depth to 41 cm. The Triax 2000 was installed over the centre of this test crib and an initial series of 3 drops was performed from a given drop height with the results recorded. The average of the last 2 drops was calculated and recorded as the HIC/G-max value for that height. The entire loosening and compaction procedure was then repeated and another series of 3 drops held at a height 30 cm up or down as required with the results again recorded and averaged. The procedure was repeated until a maximum passing height (where both the HIC was at or below 1000 and the peak G-max was at or below 200) as well as a minimum failing height (where either the HIC was over 1000 or the G-max was over 200) were both recorded.

1.3.3.3. Saturation Tests

A 14.1 L sample of dry sand was placed in the burlap testing device. Prior to placement the burlap was wetted with water. Water was added in small measured amounts from a measuring cup until water was observed to drip from the underside of the test device. This was determined to be the saturation point and the total amount of water added to reach that point was recorded.

1.3.3.4. Flow Tests

A 14.1 L sample of dry sand was placed in burlap testing device. Prior to placement the burlap was wetted with water. Water was then poured continuously from the plastic watering pails on top of the sand at a rate that ensured a continuous film of water was maintained on top of the sample. Once water began to flow out the bottom the test was stopped and the time from start to finish recorded.

2. Results

2.1. Surface Impact Tests

2.1.1. Ottawa Playground Sand - Dry Condition

Date of Test: 2009-06-17

Max Drop Height with Peak G-max \leq 200 and HIC \leq 1000 : 390 cm

Drop Height (cm)	Drop 1 HIC/Peak	Drop 2 HIC/Peak	Drop 3 HIC/Peak	Avg 2&3 HIC/Peak
360	534/134	517/119	558/123	537/121
390	594/143	850/158	667/136	758/147

Note: due to limitations of the testing equipment and facility the maximum height that drops could be made from was 390 cm;

2.1.2. Ottawa Playground Sand - Wet Condition

Date of Test: 2009-06-17

Max Drop Height with Peak G-max ≤ 200 and HIC ≤ 1000 : 270 cm

Drop Height (cm)	Drop 1 HIC/Peak	Drop 2 HIC/Peak	Drop 3 HIC/Peak	Avg 2&3 HIC/Peak
270	283/89	568/135	609/137	588/136
300	350/98	542/127	1547/242	1044/184

2.2. Saturation and Flow Test

2.2.1. Ottawa Playground Sand

Date of Test: 2009-06-17

The volume of water to saturate the 14.1 L sand sample was 3.9 litres. The flow time for the 14.1 L sand sample was 1 minute 50 seconds.

Tests Performed by: _____

Date:

Peter Kells Grace-Kells Consultant Inc.

Appendix A Apparatus

Crib With Dry Sand After Drop

Tamping Dry Sample with Vibra Plate

High Drop Height

Hand Tamping the Wet Sample

Saturation/Flow Test Device

Appendix B The Samples

Ottawa Playground Sand

Ottawa Playground Sand

patersongroup

Consulting Engineers
1-28 Concourse Gate, Nepean, Ontario K2E 7T7
Phone: (613) 226-7381 Fax: (613) 226-6344

	-
الإسادة وكالمرا المسر والمشر المسر	200
ASTE BALLARS STAR	
a state water water and the	
and the second s	
the standard of the standard of the standard standard to	

CLIENT:	Greely Sa	and & Gravel	DESCRIPTION	l: S	and	FILE NO .:	PM0754
CONTRACT NO.	:		SPECIFICATION	I: Playgro	und Sand	LAB NO .:	27876M
PROJECT:	Lab	Testing	INTENDED USE	Ŀ	-	LOT/SUB:	-
			PIT OR QUARRY	1: 1	Pit	SEAL #:	
SAMPLED BY:	C	lient	LOCATION	l: Spral	t Road	DATE REC'D:	16-Jun-09
DATE SAMPLED):	N/A	SAMPLE LOCATION	t: Sto	ckpile	DATE REQ'D :	
WEIGHT BEFC	RE WASH			A+B	351.4	DATE TESTED:	18-Jun-09
WEIGHT AFTE	RWASH	A	8	A+B	347.6	TESTED BY:	J.W
SIEVE SIZE	TOTAL WEIGHT RETAINED	CUM. WT RETAINED (A)	CUM. WT RETAINED (B)	% RETAINED	% PASSING	SPEC.	REMARK
150 mm							
106 mm							
75 mm		1					
63 mm							
53 mm		·					
37.5 mm		ta shi					
26.5 mm	_	÷ . *					
19 mm		1					
16 mm							
13.2 mm				T			
9.5 mm							
6.7 mm	-						
4.75 mm	0.0	0.0: -		0.0	100.0		
2.36 mm	2.8	2.8	1.1	0.8	99.2		
1.18 mm	24.9	24.9		7.1	92.9		
0.600 mm	84.2	84.2		24.0	76.0		
0.300 mm	236.0	236.0		67.2	32.8		
0.150 mm	323.3	323.3		92.0	8.0		
0.075 mm	345.3	345.3		98.3	1.7		
PAN	347.6	347.6					
SIEVE (CHECK	0.000	0.3% max	1			

REFERENCE MATE			MATERIAL
OTHER TESTS	RESULT	LAB NO.	RESULT
		_	
REVIEWED BY: Stephen J. Walker, P.Eng.	DATE	REPORTED:	19-Jun-09

Appendix C Surface Impact Data

Ottawa Playground Sand - Dry Tests

Sand Temperature: 21 degrees C.

Dry Test Drop Height: 330 cm

Drop	G-Max	HIC	Velocity
1	126	460	810
2	149	742	815
3	133	630	815
Avg 2 &3	141	686	815

Dry Test Drop Height: 360 cm

Drop	G-Max	HIC	Velocity
1	134	534	848
2	119	517	848
3	123	558	853
Avg 2 &3	121	537	850

Dry Test Drop Height: 390 cm

Drop	G-Max	HIC	Velocity
1	143	594	880
2	158	850	885
3	136	667	885
Avg 2 &3	147	758	885

Ottawa Playground Sand - Wet Tests

Sand Temperature: 22 degrees C.

Wet Test Drop Height: 240 cm

Drop	G-Max	HIC	Velocity
1	82	242	693
2	129	505	696
3	76	242	693
Avg 2 &3	102	373	694

Wet Test Drop	Height:	270 cm
---------------	---------	--------

Drop	G-Max	HIC	Velocity
1	89	283	734
2	135	568	737
3	137	609	739
Avg 2 &3	136	588	738

Wet Test Drop Height: 300 cm

Drop	G-Max	HIC	Velocity
1	98	350	772
2	127	542	777
3	242	1,547	782
Avg 2 &3	184	1,044	780

Appendix D Certificates

CERTIFICATE OF COMPLIANCE

TRIAX 2000

The Triax 2000 system for surface resiliency testing meets the equipment specifications as stated in ASTM F1292-99

Paul Bamburak, P.E.

Engineers and Manufacturers
Electronic Instruments and Controls
· Precision Mechanisms

Dytran Instruments, Inc. 21592 Marilla St. Chatsworth, CA 91311 Ph: 818-700-7818 Fax 818-700-7880 www.dytran.com email: info@dytran.com

page 1 of 1

CALIBRATION CERTIFICATE TRIAXIAL LIVM ACCELEROMETER

CUSTOMER: ALPHA AUTOMATION					TEST REPORT #: 1356 1/16/2009						
PURCHASE ORDER #: 18263				SAL	SALES ORDER #: RMA#19360 PROCEDURE:			: TP3002			
MODEL: 3014M2 SERIAL #			AL #:	135	1356 RANGE, F.S. (g's): +/- 500						
NEW U	NIT	RE-C	ALIBRATION	I [1] 🛛 🗙	(AS RECEI	VED C	ODE	1	AS RETURNE	D CODE 1
TEMPE	RATURE (°C):	24								HUMIDITY	(%): 24
			1	REQUE	INCY	RESPONS	SE [2]				
FREQ	UENCY (Hz)		AXIS 1 (mV/g	1)		AXIS 2 (mV/g)			AXIS 3 (mV/g)	
	20		10.10			10.20			10.30		
	30		10.10			10.20			10.3	0	
	50		10.10			10.30			10.3	0	
	100		10.10			1	0.40			10.3	0
	300		10.10			1	0.40			10.4	0
	500		10.10			1	0.50			10.4	0
	1000	10.30				10.60			10.6	0	
	2000		10.50			10.60			10.6	0	
BIAS VO	LTAGE (VDC)		10.7			1	0.7	10.7			,
DISCHA	RGE T.C. (sec)		0.50			0.50			0.40		
REMAR	KS: NONE										
		TE	EST EQUIPME	INT LIST	T - CA	LIBRATIC	ON STA	tion #	8		
DII #	MANUFACT	TURER	MODEL	SERIA	\L #	D	ESCRI	PTION		CAL DATE	DUE DATE
527	INSTER	ĸ	GFG-8217A	B 720	272	FUNC	TION GE	GENERATOR		02/07/08	02/07/09
599	KENWOO	DD	CS-4135A	09070	200	0	OSCILLOSCOPE		02/06/08	02/06/09	
525	FLUKE		45	61880	017		MULTIMETER		05/20/08	05/20/09	
392	TRIG-TE	ΕK	346B	277		SYNTHE	IESIZED CALIBRATOR		07/03/08	07/03/09	
686	DYTRAN II	NST.	3010M14	1684	4	ACCELEROMETER		METER		08/26/08	08/26/09
014	NICOLE	T	3091	84D00	744	DIGITAL OSCILLOSCOPE		E	04/22/08	04/22/09	
(1) AS RECEIVED / AS RETURNED CODES: 1 = IN TOLERANCE, NO ADJUSTMENTS 4 = OUT OF TOLERANCE > 5% 7 = UNIT NON-REPAIRABLE, RECOMMEND REPLACEMENT 2 = IN TOLERANCE, BUT ADJUSTED 5 = REPAIR REQUIRED 8 = UNIT SERVICEABLE WITH CURRENT CALIBRATION DATA											
2] THE REFE	RENCE SENSITIVITY IS	MEASURED	AT 100 Hz, 1G RMS.								
[3] THIS CALIBRATION WAS PERFORMED IN ACCORDANCE WITH ANSI/NCSL 2540-1-1994, ISO 10012-1, ISO/IEC17025 USING THE											
BACK-TO-BACK COMPARISON METHOD PER ISA RP37.2 AND IS TRACEABLE TO THE NIST THROUGH TEST REPORT # 10892-120LHS DUE 08-26-09 ESTIMATED UNCERTAINTY OF CALIBRATION: 2% FROM 20-50 Hz, 1.5% FROM 100-2500 Hz, 2.8% FROM 2.5-10 kHz, APPLIES TO FREQUENCY RESPONSE ONLY.											
THIS CERTIFICATE SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT THE WRITTEN PERMISSION FROM DYTRAN INSTRUMENTS, INC.											
CALIBR	RATION TECH	NICIAN:	-		6			TEST [DATE:	01/16/0	9
				STA				RECAL	L DAT	TE: 01/16/1	0

HOLILISNI LIT

The Canadian Parks and Recreation Association

Peter Kells

has successfully completed the requirements to be a

Canadian Certified Playground Inspector

[Expiry Date: March 15, 2012]

March 15, 2009

Date

Typelow Mende **CPRA** Chair

	ONTARIO PARKS ASSOCIATION "Protecting Tomorrow Today"®	
Y	This is to certify that	
	PETER KELLS	
	based on his considerable experience and background in the Playground Equipment Industry, and as a lead instructor of the	
	is hereby registered as a	
	PLAYGROUND PRACTITIONER	
	Dated: May 1, 2001	
	Pytsidenl, 2000 – 2001 Ontario Parks Association Executive Director Ontario Parks Association	
C		